Lecture 25

Andrei Antonenko

April 7, 2003

1 Euclidean spaces

Definition 1.1. Let V be a vector space. Suppose to any 2 vectors $v, u \in V$ there assigned a number from $\mathbb R$ which will be denoted by $\langle v, u \rangle$ such that the following 3 properties hold:

Bilinearity • $\langle au_1 + bu_2, v \rangle = a \langle u_1, v \rangle + b \langle u_2, v \rangle$ • $\langle u, av_1 + bv_2 \rangle = a \langle u, v_1 \rangle + b \langle u, v_2 \rangle$

Reflexivity $\langle u, v \rangle = \langle v, u \rangle$

Positivity $\langle u, u \rangle \geq 0$; moreover if $\langle u, u \rangle = 0$, then $u = 0$.

Any function which satisfy properties above is called a **scalar (inner) product**. A vector space V with a scalar product is called a (real) Euclidean space.

Now we will give popular examples of the scalar products in different spaces.

 \mathbb{R}^n The scalar product of 2 vectors x and y from \mathbb{R}^n can be defined as following: if

 $x = (x_1, x_2, \ldots, x_n)$ and $y = (y_1, y_2, \ldots, y_n)$

then

$$
\langle x, y \rangle = x_1 y_2 + x_2 y_2 + \cdots + x_n y_n.
$$

If the vectors are represented by column-vectors, i.e. by $n \times 1$ -matrices, then

 $\langle x, y \rangle = x^\top y.$

Example 1.2. Let $x = (1, 2, 3)$ and $y = (3, -1, 4)$. Then $\langle x, y \rangle = 1.3 + 2 \cdot (-1) + 3 \cdot 4 = 13$.

Actually, there are other ways of defining a scalar product in the vector space \mathbb{R}^n . For example, given positive numbers a_1, a_2, \ldots, a_n we can define the scalar product to be

$$
\langle (x_1, x_2, \ldots, x_n), (y_1, y_2, \ldots, y_n) \rangle = a_1(x_1y_1) + a_2(x_2y_2) + \cdots + a_n(x_ny_n).
$$

 $M_{m,n}$ The scalar product of 2 $m \times n$ -matrices A and B such that

$$
A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \text{ and } B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}
$$

is equal to the sum of products of the corresponding entries:

$$
\langle A, B \rangle = a_{11}b_{11} + a_{12}b_{12} + \dots + a_{1n}b_{1n}
$$

+ $a_{21}b_{21} + a_{22}b_{22} + \dots + a_{2n}b_{2n}$
+ ...
+ $a_{m1}b_{m1} + a_{m2}b_{m2} + \dots + a_{mn}b_{mn}$.

We can write this scalar product in terms of matrix multiplication, but to do it we need one more definition.

Definition 1.3. The **trace** of the square matrix A is the sum of its diagonal elements. It is denoted by tr A.

Example 1.4.

$$
\operatorname{tr}\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = 1 + 5 + 9 = 15.
$$

Now, using trace we can write that

$$
\langle A, B \rangle = \text{tr}(AB^{\top}).
$$

This is true, since diagonal elements of AB^{\dagger} are the following:

$$
(1, 1): \t a_{11}b_{11} + a_{12}b_{12} + \cdots + a_{1n}b_{1n};
$$

\n
$$
(2, 2): \t a_{21}b_{21} + a_{22}b_{22} + \cdots + a_{2n}b_{2n};
$$

\n...
\n
$$
(m, m): \t a_{m1}b_{m1} + a_{m2}b_{m2} + \cdots + a_{mn}b_{mn}.
$$

 $P_n(t)$, $P(t)$, $C[0, 1]$ Here we're considering the spaces of polynomials and the space of continuous functions on the interval $[0, 1]$. If f, g are 2 functions (or polynomials) we can define their scalar product by the following formula:

$$
\langle f, g \rangle = \int_0^1 f(t)g(t) dt.
$$

Moreover, we can consider the space of all functions which are continuous on the interval $[a, b]$, and in this case the scalar product will be defined as

$$
\langle f, g \rangle = \int_a^b f(t)g(t) dt.
$$

In all mentioned cases it is simple to check that the properties of the scalar product are satisfied.

2 Norm. Cauchy-Bunyakovsky-Schwartz inequality

In the vector space we can define the function, which is the natural generalization of the length of the vector.

Definition 2.1. For any vector v from the Euclidean space we can define the number $||v||$, which is called the **norm** of v by the following formula:

$$
||v|| = \sqrt{\langle v, v \rangle}
$$

In the case of the space \mathbb{R}^n we see that the norm of a vector is its length:

$$
||(x_1, x_2, \dots, x_n)|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}
$$

The following important fact about the scalar product is one of the most fundamental theorems in mathematics.

Theorem 2.2 (Cauchy-Bunyakovsky-Schwartz inequality). For any vectors u and v from the Euclidean space V ,

$$
\langle u, v \rangle^2 \le \langle u, u \rangle \langle v, v \rangle.
$$

In the different form this inequality can be written as

$$
|\langle u, v \rangle| \le ||u|| ||v||.
$$

Proof. Let t be an arbitrary number. Let's consider the scalar product of $tu + v$ with itself:

$$
\langle tu + v, tu + v \rangle = t^2 \langle u, u \rangle + t \langle u, v \rangle + t \langle v, u \rangle + \langle v, v \rangle
$$

= $t^2 \langle u, u \rangle + 2t \langle u, v \rangle + \langle v, v \rangle$

This can be considered as a polynomial of the second power of t. Since $\langle tu + v, tu + v \rangle \ge 0$, then this quadratic polynomial is greater or equal to 0. So, it has either 1 on no roots, and thus it's discriminant is less then or equal to 0:

$$
D = \langle u, v \rangle^{2} - \langle u, u \rangle \langle v, v \rangle \leq 0.
$$

Thus,

$$
\langle u, v \rangle^2 \le \langle u, u \rangle \langle v, v \rangle.
$$

 \Box

Using this theorem we can now consider the properties of the norm.

Positivity $||v|| \ge 0$. Moreover, $||v|| = 0$ if and only if $v = 0$.

Linearity $||kv|| = |k| ||v||$.

Triangle inequality $||u + v|| \le ||u|| + ||v||$.

Proof. Positivity: Directly follows from the definition of the norm. $\textbf{Linearity: } \Vert kv \Vert =$ $\frac{1}{2}$ $\langle kv, kv \rangle =$ \mathfrak{g} $k^2\langle v,v\rangle = |k|$ $\frac{1}{\sqrt{2}}$ $\langle v, v \rangle = |k| \|v\|.$ **Triangle inequality:** Let's consider $||u + v|| \ge 0$. We can rewrite it in the following way:

$$
||u + v||2 = \langle u + v, u + v \rangle
$$

= $\langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle$
= $||u||2 + 2\langle u, v \rangle + ||v||2$ by C-B-S inequality

$$
\le ||u||2 + 2||u||||v|| + ||v||2
$$

= $(||u|| + ||v||)2$

Now, taking roots of both sides we get

$$
||u + v|| \le ||u|| + ||v||.
$$

 \Box

Geometrically speaking, the last inequality means that the side of the triangle is less then or equal to the sum of other 2 sides:

